x ≡ y mod n
x is congruent to y mod n when x modulo n gives the remainder as y
This can also be represented as x = kn + y

x ≡ y mod n if n divides (x - y)
This property can be used to verify that the first equation is correct

Properties

Given x ≡ y mod n and a ≡ b mod n
then (x + a) ≡ (y + b) mod n

Given x ≡ y mod n and a ≡ b mod n
then (x - a) ≡ (y - b) mod n

Given x ≡ y mod n and a ≡ b mod n
then (x * a) ≡ (y * b) mod n

[(a mod n) + (b mod n)] mod n ≡ (a + b) mod n
[(a mod n) - (b mod n)] mod n ≡ (a - b) mod n
[(a mod n) * (b mod n)] mod n ≡ (a * b) mod n

PropertyExpression
Commutative Laws(a + b) mod n = (b + a) mod n
(a * b) mod n = (b * a) mod n
Associative Laws[(a + b) + c] mod n = [a + (b + c)] mod n
[(a * b) * c] mod n = [a * (b * c)] mod n
Distributive Laws[a * (b + c)] mod n = [(a * b) + (a * c) mod n]
Identities(0 + a) mod n = a mod n
(1 * a) mod n = a mod n
Additive LawsFor each a∈Zn there exists ‘-a’ such that
a + (-a) ≡ 0 mod n